X Print Service Extension Library

Protocol Version 1.0

X Consortium Standard
X Version 11 Release 6.4

A. Deininger
T. Gilg
J. Miller
H. Phinney
C. Prince

Hewlett-Packard Co.

K. Samborn
R. Swick

X Consortium, Inc.

Copyright (c) 1996 Hewlett-Packard Company
Copyright (c) 1996 International Business Machines, Inc.
Copyright (c) 1996 Sun Microsystems, Inc.

Copyright (c) 1996 Novell, Inc.

Copyright (c) 1996 Digital Equipment Corp.

Copyright (c) 1996 Fujitsu Limited

Copyright (c) 1996 Hitachi, Ltd.

Copyright (c) 1996 X Consortium, Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
documentation files (the " Software"), to deal in the Software without restriction, including without limitation the
rightsto use, copy, modify, merge, publish, distribute, sublicense, and sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE ISPROVIDED "ASIS', WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE X CONSORTIUM BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be used in advertising or otherwise to
promote the sale, use or other dealingsin this Software without prior written authorization from the X Consortium.

X Window Systemis atrademark of X Consortium, Inc.

Table of Contents

1 X PriNt SEIVICE OVEIVIEW. ...cceiiiiiiiiiiiiiiitit ettt e e e ettt e et e e e e e e s e bbb b e et e et aaaaeesaaannnbbsbeeeeaaaaaaeaaan L.
1.1 X Print Service Core COMPONENLIS.......cciiuuuiiiiiieteaaaa et aettebeeeeeataaaeaesaaannreseeeeeaaaeaasasaaannne 1.
1.2 X Print SErvice KEY CONCEPLS......cceiiiiuititieiitaeae e e e e s ettt bt et e e e e e e e e e s aibabbeeeeeeaaaeeesaaannsbeeeees 2.
1.3 The Developer's/INtEQrator's VIBM i iiiiieieee e e ettt e e e e e e e s eeeaaaae e e T
1.4 The Printer VENUOI'S VIBW.......uuuuiiiiiiiiiieee ettt e e ettt e e e e e e e e e s s et aebeeeeaaaaeeeaan i
1.5 The System AdMINISIrAtOr'S VIBWL.uuueiiiiiiiaaiie ittt e e e e e e e e eeeee e 5.

2 X Print Service EXtENSION LIDIary..........oooiiiiiiiiiiee e e e e e e e e s e e e YA
% T I =T 01T o 1= o o o SRSy PSR
A I | o - A - | =S EEESRRY ASPPPR

2.2.1 Creating and Managing Print CONtEXES.......uuiiieeeeiiiiiiiiiiiieeece e ss s e e e e e 8.....
2.2.2 Obtaining the Screen for a Print CONteXt........cevvivieeiiiiiiiiiiiieeecee e 10...
2.2.3 Obtaining Page DIMENSIONS..........ccccuuriiiieiieee e e e e srcietrrer e e e e e e e s e s sssanranreeeeeeaeeeesennns 10.....
2.2.4 Starting, Ending, and Canceling JOBS............oooicciiiiiiiiiee e 12...
2.2.5 Starting, Ending, and Canceling DOCUMENIS.........ccviveeeeiiiiiiiiiiiieee e e e e 13..
2.2.6 Getting and Putting Data int0 DOCUMENLS..........uuuiiiieiieeeriiiiiiiieee e e e e e e e e e s eneneeeens 15...
2.2.7 Starting, Ending, and Canceling Pages.........ccvvvieeiiiiiiiiiiiiiieiieee e 18...
2.2.8 SElECHNG INPUL...eeiiiiie e e e e e e s s e e e et e e e e e e s s e nannrarrneeeeeas 19.......
2.2.9 Getting and Setting AtIHDULES..........coociiiiieiiie e 20.....
2.2.10 Getting PriNtEr LISTS.....uuuieiiiieeee i i s iiiiiiiiiee s e e e e e s st e e e e e e e e e s s s s nrabaeereeeaeeeeesannene 23......
2.2.11 Querying Version, Extension, and SCre@N.........ccccccvvvveeeiiiiiciiiiiieeeee e 24...
2.2.12 Getting PDM ParameterS.......c.uuuuuiiiiieieeeiiiiiiiiiiiieeeeeeeeessssssssiesseeeseaaeesssssnnssssssseeees 25......

2.2.13 Setting and Getting Locale HINLELS........uuuiiiiiiee e e e e e e e 26....

X Print Service Overview 1

1

11

X Print Service Overview

The X Print Service alles X imaging to non-display &&es, such as printers. It is called théPtint”
Service because the technology will primarily be applied to printing. The technology wawehbe
applied to a range of non-displayé®s. D date, print rendering technologievdavolved separately
from display rendering technologies. The thrust of the X Print Service is¥emgerthe golution of these
print and display technologies bytending the use of the X imaging model.

For example, todays X ervironment preides a number of APIs and technologies for rendering to a display
including:

« Xlib

 PEXIib

e XlImaging Extension
e OSF/Motif Toolkit

e Scalable Bnts

By retaining and supplementing these (andymanre) standard APIs with one small print-specific API,
libXp, the X Print Service will allv an eisting X application to render amst a printer in addition to tradi-
tional display deices with small changes.

X Print Service Core Components

The X Print Service is made up of the faliag core components:
e X Print Extension - A ng X-Sener Extension and corresponding X Print Extension Protocol.

« libXp - The X Print Extension Library which prigles an API for applications to the X Print Exten-
sion Protocol.

e X Print “DDX" Drivers - DDX-level drivers for the X Semr that generate page description lan-
guages (PDL) such as PCL and Postscript.

» Configuration Files and Dafilts - Configuration files that describe the capabilities\araé
printer models, and other X Print Senconfiguration files.

The X Print Service is enhanced by the addition of theviitig components that are not included in this
standard:

» libDtPrint - A library of print-specific GUIs tuned tosal reference page-description-languages
and printer models. See the Common Desktoprenment Specification, &fsion 2.

e dtpdm - Also knavn as the Dt Print Dialog Manager daemon-li& process that pvales second-
ary printerspecific GUIs that handle specific printer and spooler setup tasks. See the Common
Desktop Emironment Specification, &fsion 2.

Several keywords and concepts used in this specification were weddrom the abstract standard 1SO

10175, the subsetted standard and implementation represented by POSIX 1387.4, and the yet further subset-
ted implementation represented by OS#dlium. The X Print Service does not attempt to duplicate the
functionality or APIs praeided by ag of these print subsystems, or by anher print subsystems such as

System V Ip or BSD Ip. It does, Wever, attempt to allev implementations to ark with these print sub-

system, and its architecture is open enough tavdlghter binding to a specific print subsystem in the

future.

X Version 11 Release 6.4

X Print Service Overview

1.2 X Print Service Key Concepts

The center of the X Print Serviceisthe X Print Server. To an X application, it should look and behave like a
regular X Server with the following enhancements.

Figure 0-1.X Print Service Key Concepts Diagram

X Application

etPr| erL|s
reat ontext

@eg r|ng

ntext
t(/i%r utes
etAttrl utes

DIX + OS+
Fonts + Other

int Extension

Print Contexts

Job, Document & Page attributes
Server & Printer attributes

Print DDX

y

Printers config file (config needed)

Printer model! files (provided by printer vendors)
Print Spooler Printer attribute files (some config needed)

DDX config files (provided by DDX vendors)

When the X Print Server starts, it may read a configuration file for instructions concerning which print DDX
driversto load and which printer names to support. It may also read some DDX dependent configuration
files.

At this point, the X Print Server knows which printers to support, and has access to printer model configura-
tion files that describe the capabilities of the printer models. Parallel to the printer model configuration files
are some printer attribute configuration files which can be modified if per-printer customization is desired.

When an application wishes to print, it can make a display connection to the X Print Server and ask to see
thelist of available printers by way of the XpGetPrinterList request. Once the application has selected a
printer, it can create and set a Print Context using XpCreateContext and XpSetContext.

The Print Context represents the embodiment of the printer selected. It isinitialized by the X Print Server at
XpCreateContext time to contain a printer’s default capabilities as well as the description of its overall capa-
bilities, and to maintain the state of settings on the printer, the state of rendering against the printer, and the
rendered output. The Print Context affects how the DDX driver generates its page description language
(PDL), and how the PDL is submitted to a spooler. The Print Context may also affect fonts and other ele-

Release 6.4 B S 7 XVesonll

X Print Service Owerview 3

1.3

ments in thalix layerof theX Print ServerThe most outardly visible aspects of a Print Coxttare he
attribute poolscontained within it. These attribes &press and control sexw printet job, document and
page options. Attribte pools can be accessed and modified UgigtAttributes andXpSetAttributes.

Because Print Comtés can be shared among processes, applications can enlist the hedgafidary py-
cessto manipulate print options in the Print Cotiteather than taking on the task direcliyie conenience
routineXpGetPdmStartParams is provided to enlist the help of tHerint Dialog Manager. By externalizing
this task, nes configuration dialogs and capabilities can be added witheindito modify indvidual appli-
cations.

In most cases, the dialogs displayed IBriat Dialog Manayer will be tuned to the capabilities of the corre-
spondingDDX driver. It is possible to hae multiplePrint Dialog Managers, each one responsible for han-
dling setup tasks for a @ifrent PDL.

Once the application has, with or withouPant Dialog Manager’s help, set options within the Print Con-
text, the application can malkcalls such a¥pStartJob to delineate jobs, documents and pages within a
sequence of normal X calls. Conceptuadlpb is a collection oflocumentswhere each document is in turn

a collection ofpages WhenXpEndJob is called, the resulting PDL is either sent to a print spooler or can be
retrieved by the application.

The Developer’s/integrator’s View
The deeloper or intgrator is the person who will modify ahapplicationto use the X Print Service.

From the applicatios’ perspectie, it can attach to one of twearly identical X Seers (see figure points

andB in the follaving diagram). The primary dédrence is that when connected to ¥hErint Serveaddi-

tional calls can be made to delineate print “jobs”, “documents” and “pages”, and to create and modify a Print
Contet. The functions of the tavseners may be combined into a single procegsapplications will usu-

ally find it corvenient to open separate connections for video and print rendering.

Conceptuallya “job” is a collection of “documents”, where each document is in turn a collection of
“pages”. Depending on the priradilities underlying th& Print Server(for example, a print management
system conforming to POSIX 1387.4), these delineations may be translated into tangible functionality

X Version 11 Release 6.4

4 X Print Service Overview

Figure 0-2. Developer’d/Integrator’s View

X Application

X Video Server X Print Server
~
R\
Application Application
Display Window Print Window

Coordinated
Print Setup
GUIs

Dt Print Dialog Manager

Printer Spooler Subsystem

A simple X application supplemented with some of the libXp routines might ook like this:

%

/* Connect to the X Print Server

*

p(/JIpy = XOpenDi spl ay(printServerName);

%

/* See if the printer “myLaser” is available

*

pI/ist = XpGet Pri nt er Li st (pdpy, “myLaser”, &plistCnt);
/*

* |nitialize a print context representing “mylaser”

*

péontext = XpCr eat eCont ext (pdpy, plist[0]. name);
XpFreePrint erLi st (plist);

%

/* Possibly modify attributes in the print context

*

at/trPooI = XpGet At t ri but es(pdpy, pcontext, poolType);

/* twiddle attributes */
XpSet At t ri but es(pdpy, pcontext, poolType, attrPool, XPAttrMerge);

Release 6.4 B S 7 XVesonll

X Print Service Overview 5

/*

* Set a print context, then start a print job against it
*/

XpSet Cont ext (pdpy, pcontext);

XpSt art Job(pdpy, XPSpool);

/*

* Cenerate the first page

*/

pscreen = XpCet ScreenO™ Cont ext (pdpy, pcontext);
pwi n = XCreateW ndow pdpy, pscreen,);

XpSt art Page(pdpy, pwin, True);
usual _rendering_stuff(pdpy, pscreen, pwin);
XpEndPage(pdpy);
/*
* Cenerate nore pages, and so on...
*/
XpSt art Page(pdpy, pwin, True);
nore_rendering_stuff(pdpy, pscreen, pwin);
XpEndPage(pdpy);
/*
* End the print job - the final results are sent by the
* X Print Server to the spool er subsystem
*/
XpEndJob(pdpy);
XpDest royCont ext (pdpy, pcontext);

1.4 ThePrinter Vendor’'sView

The printer vendor is the person or company that wishes to enhance the X Print Service to support a new
printer model or a new page description language. Enhancements may range from simple ones such as pro-
viding new printer model configuration files, to more complex ones such as providing anew DDX driver and
corresponding Print Dialog Manager.

The major elements within the X Print Service that can be enhanced are:

» TheDDXdriver layer inthe X Print Server. New DDX drivers can be added to support new page
description languages, provide more capabilities, or provide tighter integration with a given printer
model.

* ThePrint Dialog Manager, either as a new executable or an enhancement to an existing Print Dia-
log Manager. It can be used to provide dialogs that expose highly printer-specific options to the user
and that communicate with the DDX driver by way of the Print Context attributes.

» Theprinter model files. These files describe the capabilities and defaults of printers based on the
model.

15 The System Administrator’s View

The system administrator is the person who configures and maintains the system processes and files associ-
ated with the X Print Service. An X Print Service implementation will typically have built-in fallback
defaults for nearly everything, but in custom environments it will be configured considerably.

X Version 11 Release 6.4

6 X Print Service Overview

The X Print Service architecture has been designed so that support for specific page description languages
and spooler subsystemsisisolated to the X Print Servers DDX layerand a corresponding layer in the Print
Dialog Managyer. Using this architecture support for new page description languages and spooler subsystems
can be added centrally, without reconfiguring applications.

Support information for specific types of printers and descriptions of the printer topology is typically stored
in centralized configuration files, which are maintained by the X Print ServerUsing libXp, the configuration
information can be retrieved both by applications and by the Dt Print Dialog Manaer.

The key areas of configuration and system administration are:

» X Print Service Startup - Deciding whether a“per-user ” or “global service” model of operationis
desired. In the per-user model, a separate X Print Server process with its own Print Dialog Manager
exists for each desktop. In the global service model, a centralized X Print server process services
multiple users in aworkgroup. Typically, there may be one such centralized process per shared
printer.

» X Print ServeiStartup - Configuration filesto control which printers are available.

» Attributefiles- A collection of filesthat define the full range of capabilities of the printers accessed
by the X Print Serves (e.g. 150, 300 and 600dpi supported), and default values (e.g. use 300dpi).

» Printer Model files- A collection of filestypically supplied by aprinter vendor to describe the capa-
bilities of specific printer models (e.g. Laserjet 4si). These files will generally not require reconfig-
uration, but may be useful to reference when configuring files that describe the actual physical
printers available (e.g. eliminate the duplex printing option because the printer’s duplexer isn’t
working).

Release 6.4 B S 7 XVesonll

X Print Service Extension Library

2 X Print Service Extension Library

These functions provide access to the X Print Protocol Extension to X. In addition, some convenience func-
tions over the X Print Extension Protocol and core X Protocol are provided which make it easier for an

application programmer to use the X Print Service.

The X Print Service Extension Library concentrates on print job, document and page management. It
includes the following calls:

XpCreateContext
XpSetContext
XpGetContext
XpDestroyContext

X pGetScreenOf Context

XpGetPageDimensions
XpStartJob
XpEndJob

XpCancel Job
XpStartDoc
XpEndDoc
XpCancelDoc
XpPutDocumentData
XpGetDocumentData
XpStartPage
XpEndPage
XpCancel Page
XpSelectlnput
XplnputSel ected
XpGetAttributes
XpSetAttributes
XpGetOneAttribute
XpGetPrinterList

XpFreePrinterList - convenience routine

XpRehashPrinterList
XpQueryVersion

XpQueryExtension - convenience routine

XpQueryScreens

XpGetPdmStartParams - convenience routine

XpSetL ocaleHinter
XpGetLocaleHinter

2.1 Dependencies

The X Print Service is an extension to the core X protocol, and cannot be used outside of the X environment.

2.2 Library Calls

The header file X11/extensions/Print.h contains prototypes for the following routines.

X Version 11

Release 6.4

X Print Service Extension Library

2.2.1 Creating and Managing Print Contexts

-

Use XpCreateContext to create and initialize a new print context.

XPContext XpCreateContext (display printer_namég

Display *display,

char *printer_name
display Specifies a pointer to the Display structure; returned from XOpenDisplay.
printer_name The name of a printer on display. String encoded as COMPOUND_TEXT.

XpCreateContext creates a new print context that isinitialized with the default printer attributes and other
information available for printer_name on display. A print context maintains the printer name, print
attributes, font capabilities, print (rendering) state and results, and is the object upon which the Xp calls act.

If thelibrary fails to generate a new print context-id, a value of None isreturned, otherwise a print context-id
isawaysreturned. If printer_nameisinvalid, a BadMatch is generated later by the X Print Server

A call to XpGetPrinterList will return avalid list of values for printer_name. All printer name valuesin the X
Print Service are encoded as COMPOUND_TEXT (of which the |SO-8859-1 code-set is a proper subset).

Assoon as a print context is created, the print attributesin it can be accessed and modified by calling
XpGetAttributes and XpSetAttributes, and the event selectionsin it can be modified by calling XpSelectinput and
XplnputSelected. Other Xp callsthat explicitly take a print context-id as a parameter will operate directly on
that print context. All Xp and X calls without a print context-id parameter (for example, al rendering ori-
ented calls like XpStartJob and XDrawLine) require that a print context be set on the display connection (see
XpSetContext). Failure to set aprint context prior to calling a print-context-dependent call will result in the
generation of an XPBadContext error.

The XPContext returned by XpCreateContext is an XID, and can be used to set the print context on display
connections by calling XpSetContext. The XPContext id can be shared between processes and display con-
nections. It is the responsibility of the clients sharing a print context to coordinate their usage of the context;
for example they must ensure that in-use print contexts are not prematurely destroyed.

The context_id remainsvalid for all clientsuntil 1) the client creating the print context closesits display con-
nection, or 2) any client calls XpDestroyContext. The context_id can be kept valid after the creating client’s
display connection closesif XSetCloseDownMode is called on display with RetainPermanent or RetainTempo-
rary.

After creating a print context, and possibly modifying the XPDocAttr attribute document-format using avalue
from the list of available formats shown in the XPPrinterAttr attribute document-formats-supported, the applica-
tion must query the X Print Servewnia XpGetScreenOfContext for the screen that has been associated with the
print context, and then create all server resources that will be used in the print job on that screen. Failure to
do so will result in undefined behavior.

When XpCreateContext is called, the client’s locale (see XpSetLocaleHinter) isincluded in the request as a
“hint” to the X Print Serverlf supported by the implementation, the X Print Servewill use the hint to ini-
tialize the attribute pools with any localized attribute values (for example, the human readable XPPrinterAttr
attribute " descriptor” may be availablein severa different languages, and the hint will be used to select one).
If the X Print Servercannot understand the hint, the X Print Serveichooses a default value.

This function can generate a BadMatch error if the specified printer_name does not exist on display, or if the
print server could not interpret the code set specified in printer_name.

Use XpSetContext to set or unset a print context with the specified display connection to the X Print Server

void XpSetContext (display print_contet)
Display *display

Release 6.4

- X Version 11

X Print Service Extension Library 9

L

XPContext print_context;
display Specifies a pointer to the Display structure; returned from X OpenDisplay.
print_context A pre-existing print context on the same X Server.

XpSetContext sets the print context for adisplay connection. All subsequent print operations that do not
explicitly take a print context-id (for example, XpStartJob) on display will use and act upon the print context
set by this call, until the print context is unset or XpDestroyContext is called. The print context can be set and
used on multiple jobs, if not destroyed.

If print_context is None, XpSetContext will unset (disassociate) the print context previously associated with
display. If there was no previously associated print context, no action is taken. The content of the formerly
associated print context is not affected by this call, and other display connections may continue to use the
print context.

Since font capabilities can vary from printer to printer, XpSetContext may modify the list of available fonts
(see XListFonts) on display, and the actual set of usable fonts (see XLoadFont). A unique combination of fonts
may be available from within a given print context; a client should not assume that all the fonts available
when no print context is set will be available when a print context is set.

When a print context is set on a display connection, the default behavior of ListFonts and ListFontsWithinfo is
tolist all of the fonts normally associated with the X print server (i.e. fonts containing glyphs) aswell as any
internal printer fonts defined for the printer. The xp-listfonts-modes attribute is provided so that applications
can control the behavior of ListFonts and ListFontsWithinfo and is typically used to show just internal printer
fonts. Using only internal printer fontsis useful for performance reasons; the glyphs associated with the font
are contained within the printer and do not have to be downl oaded.

If the value of xp-listfonts-modes includes xp-list-glyph-fonts, ListFonts and ListFontsWithinfo will include all of
the fonts available to the server that have glyphs associated with them. If the value of xp-listfonts-modes
includes xp-list-internal-printer-fonts, then ListFonts and ListFontsWithinfo will include all of the fonts defined as
internal printer fonts.

When the print context is unset or XpDestroyContext is called, the available fonts on display revert back to
what they were previously.

XpSetContext can generate an XPBadContext error.

Use XpGetContext to get the current print context-id for a display connection.

XPContext XpGetContext (display)

Display *display;
display Specifies a pointer to the Display structure; returned from XOpenDisplay.

XpGetContext returnstheid of the current print context associated with display. If aprint context has not been
set, avalue of None is returned.

Use XpDestroyContext to unset and destroy a print context.

void XpDestroyContext (display, print_context)

Display *display;

XPContext print_context;
display Specifies a pointer to the Display structure; returned from XOpenDisplay.
print_context Specifies the print context to destroy.

X Version 11 Release 6.4

10

222

2.2.3

X Print Service Extension Library

XpDestroyContext closes any outstanding associations between the print context and any display connections,
and then destroys the print context. All display connections using the print context will no longer be able to
access the print context.

Destroying a print context will cause any in-progress pages, documents and jobs to be canceled within the X
Print Server.

XpDestroyContext can generate an XPBadContext error.

Obtaining the Screen for a Print Context
Use XpGetScreenOfContext to obtain a pointer to the screen associated with the specified print context.

Screen * X pGetScreenOfContext (display, print_context)

Display *display;

XPContext print_context;
display Specifies a pointer to the Display structure; returned from XOpenDisplay.
print_context A pre-existing print context. This argument is currently ignored, but must be specified.

XpGetScreenOfContext returns the screen that is associated with the current print context of display. This call
must be made after XpSetContext to determine which specific screen other X resources must be created on.

Each printer supported by a print server is associated with exactly one of the screens returned in the connec-
tion setup reply.

XpGetScreenOfContext will generate an XPBadContext error if print_context isinvalid.
Obtaining Page Dimensions

Use XpGetPageDimensions to get the page dimensions for the current printer settings.
Status X pGetPageDimensions (display, print_context, width, height, reproducible_area)

Display *display;
XPContext print_context;

unsigned short *width;

unsigned short * height;

XRectangle*reproducible area;
display Specifies a pointer to the Display structure; returned from XOpenDisplay.
print_context A pre-existing print context.
width Returns the pixel width of the page currently selected in the print context.
height Returns the pixel height of the page currently selected in the print context.

reproducible_areaReturns the net reproducible area of the page currently selected in the print context,
expressed in pixel offsets and dimensions.

XpGetPageDimensions considers the medium currently selected in the print context (derived in part from
default-medium, default-input-tray, input-trays-medium, content-orientation, default-resolution), and returns
the total width and height of the page in pixels, and the net reproducible area within the total width and
height. The net reproducible areais the portion of the page on which the printer is physically capable of
placing ink.

XpGetPageDimensions returns a Status of 0 on failure, or 1 on success.

XpGetPageDimensions can generate an XPBadContext error.

Release 6.4

- X Version 11

X Print Service Extension Library 11

-

Use XpSetimageResolution to set the resolution for subsequent Putimage requests.

Bool XpSetlmageResolution (display, print_context, image _res, prev_res return)
Display *display;
XPContext print_context;
int image_res;
int *prev_res return;
display Specifies a pointer to the Display structure.
print_context Specifies the print context on which to set the resolution.
image_res Specifies the image resolution in pixels per inch.
prev_res return Returnsthe previousimage resolution in pixels per inch.

XpSetimageResolution returns True if the printer server allowed the resolution to be set, otherwise False is
returned.

XpSetimageResolution sets the resolution for subsequent Putimage requests to the screen of the specified print
context. If the return valueis False, then the print server does not support image scaling for the particular res-
olution given the current configuration of the printer, and the application is responsible for any desired scal-
ing. If the return value is True, then the contents of any subsequent Putimage request to a Pixmap or to a
Window on the screen of the specified print context will automatically be scaled as part of the Putimage
request. The scale factor is:

default_printer_resolution / image _res

Where default_printer_resolution is the current value of that page attribute. Only the image itself is scaled
(meaning the effective width and height of the image change), the dst-x and dst-y parametersto Putimage are
not altered.

Asaspecia case, avalue of zero for image_res resets the resolution to automatically track the printer reso-
[ution; in this case (which is also the default setting for a newly created print context), subsegquent images
will not be scaled.

If the return valueis True and prev_res return isanon-NULL pointer, then the previous image resolution that
was set for the print context is stored in prev_res return.

XpSetimageResolution returns False immediately if image_resis negative or greater than 65535.
XpSetimageResolution can generate an XPBadContext error.

Use XpGetimageResolution to get the current image resolution for a print context.

int X pGetlmageResolution (display, print_context)
Display *display;
XPContext print_context;
display Specifies a pointer to the Display structure.
print_context Specifies the print context on which to get the resolution.

XpGetimageResolution returns the current image resol ution for the specified print context. A value of zero
means the resolution automatically tracks the printer resolution. If the request fails in some way, a negative
valueisreturned.

XpGetimageResolution can generate an XpBadContext error.

X Version 11 Release 6.4

12

X Print Service Extension Library

2.2.4 Starting, Ending, and Canceling Jobs

Use XpStartJob to indicate the beginning of asingle print job.

void XpStartJob (display, output_mode)

Display *display;

XPSaveData output_mode;
display Specifies a pointer to the Display structure; returned from XOpenDisplay.
output_mode Specifies how the printer output datais to be handled.

XpStartJob signals the beginning of a new print job.

If output_mode is XPSpool the X Print Server will automatically spool the printer output. If output_modeis
XPGetData, then the X Print Server buffers the document output for retrieval by XpGetDocumentData. In this

case, the print server suspends processing further requests on this print context until some other client sends
XpGetDocumentData. Subsequent operations that use the print context may be suspended at any time pending
the processing of XpGetDocumentData replies to read any buffered output.

The XPSaveData values for output_mode are defined in <X11/extensions/Print.h>.

#define XPSpool 1 /* Job datasent to spooler */
#define X PGetData 2 [* Job datavia XpGetDocumentData */

XpStartJob sets the job-owner job attribute (included in the X PJobAttr pool) immediately prior to issuing the
PrintStartJob request. On POSIX systems, the job-owner attribute is set using getpwuid_r on the result of
getuid. This attribute may be used by the X Print Server to identify the user to the spooler.

All changesto the XPJobAttr attribute pool (see XpSetAttributes) must be made prior to calling XpStartJob, after
which an XPBadSequence will be generated if changes are attempted, until XpEndJob is called.

For clients selecting XPPrintMask (see XpSelectinput), the event XPPrintNotify will be generated with its detail
field set to XPStartJobNotify when the X Print Server has completed the PrintStartJob request.

Conceptually, a“Job” isacollection of “Documents’, where each Document isin turn a collection of
“Pages’. Depending on the print facilities underlying the X Print Server, these delineations may be mapped
by aDDX driver into real functionality (e.g. see the server attribute multiple-documents-supported).

XpStartJob can generate one of the following errors:
XPBadContext A valid print context-id has not been set prior to making this call.

XPBadSequence The function was not called in the proper order with respect to the other X Print
Service Extension calls (for example, XpEndJob prior to XpStartJob).

BadValue The value specified for output_modeis not valid.

Use XpEndJob to indicate the ending of a single print job.

void XpEndJob (display)
Display *display;
display Specifies a pointer to the Display structure; returned from XOpenDisplay.

XpEndJob signals the end of a print job. Any accumulated print data that remainsis either sent to the printer
or made available to XpGetDocumentData.

For clients selecting XPPrintMask (see XpSelectinput), the event XPPrintNotify will be generated with its detail
field set to XPEndJobNotify when the X Print Server has completed the request.

Release 6.4

- X Version 11

X Print Service Extension Library 13

XPEndJobNotify indicates that the document data has been sent to the spooler (output_mode=XPSpool) or
been completely sent to the client via XpGetDocumentData (output_mode=XPGetData) - it does not mean that
the document data has been completely received and processed by the client or spooler.

XpEndJob can generate one of the following errors:

XPBadContext A valid print context-id has not been set prior to making this call.

XPBadSequence The function was not called in the proper order with respect to the other X Print
Service Extension calls (for example, XpEndJob prior to XpStartJob).

Use XpCancelJob to cancel asingle print job.

void XpCancel Job (display, discard)

Display *display;

Bool discard;
display Specifies a pointer to the Display structure; returned from XOpenDisplay.
discard When TRUE, specifies that all XPPrintNotify events should be discarded.

XpCancelJob cancels an in-progress job. If the job was started with output_mode XPGetData then the data
stream to XpGetDocumentData is terminated. For many page description languages such arbitrary termination
may invalidate the output.

If the job was started with output_mode XPSpool then depending on the driver and spooler configuration the
entire job may be canceled or a partial job may be generated.

If discard is TRUE, all XPPrintNotify events with adetail field of XPEndPageNotify, XPEndDocNotify, or XPEnd-
JobNotify are discarded before XpCancelJob returns.

For clients selecting XPPrintMask (see XpSelectinput), the event XPPrintNotify will be generated with its detail
field set to XPEndJobNotify.

XpCancelJob can generate one of the following errors:

XPBadContext A valid print context-id has not been set prior to making this call.

XPBadSequence The function was not called in the proper order with respect to the other X Print
Service Extension calls (for example, XpEndJob prior to XpStartJob).

2.2.5 Starting, Ending, and Canceling Documents
Use XpStartDoc to indicate the beginning of a print document.

void XpStartDoc (display, type)
Display *display;
XPDocumentType type;
display Specifies a pointer to the Display structure; returned from XOpenDisplay.
| type Specifies the type of document. It can be either XPDocRaw or XPDocNormal.

XpStartDoc signals the beginning of anew print document.

If type is XPDocRaw, then the client will provide al the data for the resulting document using XpPutDocument-
Data; the X Print Server will not write any data into the resulting document. Calling XpStartPage in a
XPDocRaw document will generate an X PBadSequence error. For more information, see XpPutDocumentData.

X Version 11 Release 6.4

14

X Print Service Extension Library

If type is XPDocNormal, then the X Print Server will generate document data, and depending on the DDX
driver, can incorporate additional data from XpPutDocumentData into the output. For more information, see
XpPutDocumentData.

The XPDocumentType values are defined in <X11/extensions/Print.h>:

#define XPDocNormal 1 /* Doc datahandled by Xserver*/
#define XPDocRaw 2 [* Doc data passed through X server*/

All changes to the XPDocAttr attribute pool (see XpSetAttributes) must be made prior to calling XpStartDoc,
after which an XPBadSequence will be generated if changes are attempted, until XpEndDoc is called.

The application is not required to call XpStartDoc and XpEndDoc in the process of printing. The “document”
delineation may not be useful from the application’s or spooler’s perspective, hence is optional. If
XpStartPage is called immediately after XpStartJob then a synthetic XpStartDoc with XPDocNormal will be
assumed by the X Print Server prior to XpStartPage (i.e. the XPStartDocNotify and XPStartPageNotify eventswill
have the same sequence number). Likewise, if XpEndJob is called immediately after XpEndPage then a syn-
thetic XpEndDoc will be assumed by the X Print Server prior to XpEndJob (i.e., the XPEndDocNotify and
XPEndJobNotify events will have the same sequence number).

For clients selecting XPPrintMask (see XpSelectinput), the event XPPrintNotify will be generated with its detail
field set to XPStartDocNotify.

XpStartDoc can generate one of the following errors:

XPBadContext A valid print context-id has not been set prior to making this call.

XPBadSequence The function was not called in the proper order with respect to the other X Print
Service Extension calls (example, XpStartDoc prior to XpStartJob).

BadValue The value specified for typeis not valid.

Use XpEndDoc to indicate the ending of a print document.

void XpEndDoc (display)
Display *display;
display Specifies a pointer to the Display structure; returned from X OpenDisplay.

XpEndDoc signals the end of a print document. All resulting document data is assembled and combined with
data previously sent by XpPutDocumentData.

For clients selecting XPPrintMask (see XpSelectinput), the event XPPrintNotify will be generated with its detail
field set to XPEndDocNotify.

XpEndDoc can generate one of the following errors:

XPBadContext A valid print context-id has not been set prior to making this call.

XPBadSequence The function was not called in the proper order with respect to the other X Print
Service Extension calls (example, XpEndDoc prior to XpStartDoc).

Use XpCancelDoc to cancel a print document.

void XpCancelDoc (display, discard)
Display *display;
Bool discard;
display Specifies a pointer to the Display structure; returned from XOpenDisplay.
discard When TRUE, specifies that all XPPrintNotify events with a detail of XPEndPageNotify or
XPEndDocNotify should be discarded.

Release 6.4

- X Version 11

X Print Service Extension Library 15

XpCancelDoc cancels an in-progress document. If the job was started with output_mode XPGetData then the
data stream to XpGetDocumentData is interrupted; no further data for the current document will be generated
but data for subsequent documents can be generated. For many page description languages such arbitrary
termination may invalidate the output.

If the job was started with output_mode XPSpool then depending on the driver and spooler implementation
the entire document may be canceled or a partial document may be generated.

If discard is True all XPPrintNotify events with a detail field of XPEndPageNotify or XPEndDocNotify are dis-
carded before XpCancelDoc returns.

For clients selecting XPPrintMask (see XpSelectinput), the event XPPrintNotify will be generated with its detail
field set to XPEndDocNotify.

XpCancelDoc can generate one of the following errors:

XPBadContext A valid print context-id has not been set prior to making this call.

XPBadSequence The function was not called in the proper order with respect to the other X Print
Service Extension calls (example, XpEndDoc prior to XpStartDoc).

2.2.6 Getting and Putting Data into Documents
Use XpPutDocumentData to send and incorporate data into the outpuit.

’7 void XpPutDocumentData (display, drawable, data, data_len, doc_fmt, options)
Display *display;
Drawable drawable;
unsigned char *data;
int data_len;
char *doc_fnt;
char *options;
display Specifies a pointer to the Display structure; returned from X OpenDisplay.
drawable Specifies the destination drawable for rendering.
data Specifies the device-specific data sent.
data_len Specifies the number of bytesin data.
doc_fmt Specifies the type of data sent. See below for valid values. String limited to XPCS

characters.
_ options Specifies DDX driver dependent options. String limited to XPCS characters.

Depending on type for XpStartDoc, XpPutDocumentData has two modes of operation.

In XPDocRaw mode, XpPutDocumentData sends data directly to the output, and drawable must be None, elsea
BadDrawable error will be generated. The X Print Server does not emit document or page control codes into
the output, and data is passed through unmodified. Thisis useful for sending previously constructed and
complete documents using the X Print Server’sjob control and submission capabilities. The printer attribute
xp-raw-formats-supported defines the valid values for doc_fmt in this mode, with unsupported values for
doc_fmt causing aBadMatch error to be generated.

In XPDocNormal mode, XpPutDocumentData sends data to the X Print Server, and depending on the DDX
driver implementation, integrates data into the output. The parameters doc_fmt and options describe the for-
mat of datawhich guidesthe DDX driver ininterpreting data. The printer attribute xp-embedded-formats-sup-
ported defines the valid values for doc_fmt in this mode, with unsupported values for doc_fmt causing a
BadMatch error to be generated.

If doc_fmt is not in either xp-raw-formats-supported or xp-embedded-formats-supported a BadValue error is gen-
erated.

X Version 11 Release 6.4

16

X Print Service Extension Library

Depending on the DDX driver implementation in use, XpPutDocumentData might be used, for example, to
send asimple text file to a Postscript DDX driver that is capable of wrapping the appropriate document and
page control constructs around the text so that it can be printed on a Postscript printer. Likewise, Encapsu-
lated Postscript Files might be handled. Another use could beto send a TIFF fileto aPCL DDX driver that
can convert the image from TIFF into PCL and then integrate it into the current PCL output.

There isno limit to the value of data_len. XpPutDocumentData automatically decomposes the call into multi-
ple protocol requests to make sure that the maximum request size of the server is not exceeded.

XpPutDocumentData can generate one of the following errors:

XPBadContext A valid print context-id has not been set prior to making this call.

XPBadSequence The function was not called in the proper order with respect to the other X Print
Service Extension calls (for example, XpPutDocumentData prior to XpStartDoc).

BadValue The value specified for doc_fmt is not supported.

BadMatch The value specified for doc_fmt is not valid for the current document type or the
value specified for drawable is not valid for the print context and print screen.

BadDrawable The value specified for drawable is not valid.

Use XpGetDocumentData to setup callbacks to retrieve document data from a print context.

Status X pGetDocumentData (data_displaycontet, save_poc, finish_poc, client_data)
Display *data_display
XPContext context;
XPSaveProc save_poc;
XPFinishProc finish_poc;
XPointer client_data
data_display Specifiesapointer to the Display structure; returned from X OpenDisplay.
contet The print context from which document datais to be retrieved.
save_poc A procedure to be registered and called repeatedly to save blocks of document data.
finish_poc A procedure to be registered and called once when the print job has completed and all
document data has been sent to save_proc.
client_data Specifies client data to be passed to save_proc and finish_proc when called.

Thereturn value isNULL if XpGetDocumentData encounters an error, non-NULL otherwise.

XpGetDocumentData registers callbacks that allow a*“consumer” to continuously retrieve document data gen-
erated in the X Print Servety a separate “ producer”, where both are referencing the same print context by
way of differentdisplay connections. Though XpGetDocumentData retrieves document data, its effect is
bounded by XpStartJob and XpEndJob. XpGetDocumentData always returnsimmediately; if an error occurs and
the callbacks cannot be registered, the return statusis O, else the return status is non-zero and the callbacks
will be called sometime after the return from XpGetDocumentData. This producer/consumer exchange is set
up when XpStartJob is called by the producer with output_mode equal XPGetData, and is subsequently initi-
ated when XpGetDocumentData is called by the consumer. Though XpStartJob will return immediately, further
attempts to use the producer’s display connection may be blocked by the X Print Serveuntil XpGetDocu-
mentData is called on the consumer’s display connection.

Once XpGetDocumentData is called on data _display, data_display cannot be used for any additional X
requests until finish_prociscalled and returns. Further, data_display cannot be closed from within save_proc
or finish_proc. To avoid deadlock, the producer and consumer must run in separate processes, or in separate
threads of a single process.

The save proc is defined in <X1l/extensions/Print.h> as:

Release 6.4

- X Version 11

X Print Service Extension Library 17

typedef void (*XPSaveProc)(Display *data_displ ay,
XPCont ext cont ext,
unsi gned char *dat a,
unsi gned int data_len,
XPoi nter client_data);

The save proc isrepeatedly called on each chunk of document data sent by the X Print Server until either
XpEndJob or XpCancelJob is called. data_len specifies the number of bytesin data. The memory for dataitself
isowned by the library, so save_proc should copy data to another location before returning. After the last
block of data has been delivered to save proc, finish_proc is called with final status.

Thefinish_proc is defined in <X11/extensions/Print.h> as:

typedef void (*XPFinishProc)(D splay *data_display,
XPCont ext cont ext,
XPGet DocSt at us st at us,
XPoi nter client_data);

After XpGetDocumentData successfully registersthe callbacks, any generated X errors (for example, BadAlloc)
or Xp errors (for example, XPBadContext or XPBadSequence) that are the result of XpGetDocumentData will
cause the Xlib error handler to be invoked, and then will cause finish_proc to be called with a status of
XPGetDocError. Any other activities (for example, a separate process destroying the print context) that prove
fatal to the progress of XpGetDocumentData will also cause finish_proc to be called with a status of XPGet-
DocError.

If XpGetDocumentData is called prior to XpStartJob, then an XPBadSequence error is generated and finish_proc
is called with XPGetDocError. If XpGetDocumentData is called after XpStartJob and output_mode was specified
as XPSpool, then an XPBadSequence error is generated and finish_proc is called with XPGetDocError. If the
producer starts generating data and the consumer cannot consume data quickly enough, then the producer’s
display connection will be blocked by the X Print Server.

Until XpEndJob or XpCancelJob is called, it is possible that various XPPrintNotify events will be generated (for
example, a page has been canceled). The data passed to save proc is not necessarily organized according to
the consumer’s requests or any generated events, and its consistency is guaranteed only if the entire job com-
pletes successfully (i.e. without being canceled or generating an error). Consumers may want to select for
XPPrintNotify events and terminate save processing upon receipt of cancellation events.

When finish_proc is called, sometime after XpGetDocumentData is called and returns, status gives the com-
pletion status of the job and is defined in <X 11/extensions/Print.h> as:

#define X PGetDocFinished 0 /* normal termination */
#define XPGetDocSecondConsumer 1 [* setup error */
#define X PGetDocError 2 [* progress error */

XPGetDocFinshed indicates that all intended document data has been delivered by way of save proc. All can-
cellation events are guaranteed to have arrived by the time finished_proc is called, and they should be taken
into consideration for evaluating the validity of the document data returned.

XPGetDocSecondConsumer indicates that a consumer had already been established for the print context. The
X Print Server only supports one consumer per print context.

XPGetDocError indicates that an error has been generated (for example, XPBadContext or XPBadSequence) and
that no further document data will be delivered by the X Print Server to save proc.

After finish_proc returns, save_proc and finish_proc are unregistered and will no longer be called.

XpGetDocumentData can generate one of the following errors:

XPBadContext The specified print context-id is not valid.

X Version 11 Release 6.4

18

X Print Service Extension Library

XPBadSequence The function was not called in the proper order with respect to the other X Print
Service Extension calls (for example, XpGetDocumentData prior to XpStartJob).

2.2.7 Starting, Ending, and Canceling Pages

Use XpStartPage to indicate the beginning of a print page.

void XpStartPage (display, window)

Display *display;

Window window;
display Specifies a pointer to the Display structure; returned from XOpenDisplay.
window Specifies the window ID.

XpStartPage signals the beginning of anew print page, with window serving as the drawabl e representing the
page. window is required to be a descendant of the root window of the current print context window, else a
BadWindow is generated. No generation of document datawill occur for rendering operations against window
or itsinferiors prior to XpStartPage.

XpStartPage causes window to be mapped. See XpGetPageDimensions and XResizeWindow for details on resiz-
ing window to the size of the media selected prior to calling XpStartPage. Within the XpStartPage and
XpEndPage sequence, attempts to resize, move or unmap window will yield undefined results. To resize or
move inferiors of window the standard semantics of ConfigureWindow apply, except that the contents of any
configured window may be discarded. An Expose event will be generated if awindow’s contents are dis-
carded.

All changes to the XPPageAttr attribute pool (see XpSetAttributes) must be made prior to calling XpStartPage,
after which an XPBadSequence error will be generated if changes are attempted, until XpEndPage is called.

For clients selecting XPPrintMask (see XpSelectinput), the event XPPrintNotify will be generated with its detail
field set to XPStartPageNotify when the X Print Server has completed XpStartPage. If the event Expose is also
selected for (see XSelectinput), the exposure events will be generated prior to XPPrintNotify.

The client need not wait for XPStartPageNotify prior to calling any other X rendering routines.
XpStartPage can generate one of the following errors:

XPBadContext A valid print context-id has not been set prior to making this call.

XPBadSequence The function was not called in the proper order with respect to the other X Print
Service Extension calls; for example, XpStartPage was called before XpStartJob or
was called for a type XPDocRaw document.

BadWindow The value specified for window is not valid.

Use XpEndPage to indicate the end of a print page.

void XpEndPage (display)

Display *display;
display Specifies a pointer to the Display structure; returned from XOpenDisplay.

XpEndPage signals the end of a print page, and causes window to be unmapped. All resulting page datais
assembled and combined with data previously sent by XpPutDocumentData. No generation of document data
will occur for rendering operations to the corresponding windows after XpEndPage is called.

For clients selecting XPPrintMask (see XpSelectinput), the event XPPrintNotify will be generated with its detail
field set to XPEndPageNotify when the X Print Server has completed XpEndPage.

XpEndPage can generate an XPBadSequence error.

Release 6.4

- X Version 11

X Print Service Extension Library 19

2.2.8

Use XpCancelPage to cancel a print page.

void XpCancel Page (display, discard)
Display *display;
Bool discard;
display Specifies a pointer to the Display structure; returned from X OpenDisplay.
discard When TRUE, specifies that XPPrintNotify events with a detail of XPEndPageNotify should be
discarded.

XpCancelPage cancels an in-progress page. If the job was started with output_mode XPGetData then the data
stream to XpGetDocumentData is interrupted; no further data for the current page will be generated but data
for subsequent pages can be generated. For many page description languages, such arbitrary interruptions
may invalidate the output.

If the job was started with output_mode XPSpool then depending on the driver and spooler implementation
the entire page may be canceled or a partial page may be generated.

If discard is True all XPPrintNotify events with a detail field of XPEndPageNotify are discarded before XpCan-
celPage returns.

For clients selecting XPPrintMask (see XpSelectinput), the event XPPrintNotify will be generated with its detail
field set to XPEndPageNotify when the X Print Server has completed XpCancelPage.

XpCancelPage can generate an XPBadSequence error.

Selecting I nput
Use XpSelectinput to select which X Print events from the specified print context the client isinterested in.

void XpSelectinput (display, context, event_mask)

Display *display;
XPContext context;
unsigned long event_mask;
display Specifies a pointer to the Display structure; returned from XOpenDisplay.
context The print context from which to select events.
event_mask Specifies the event mask. This mask is the bitwise OR one or more of the valid events
mask bits (see below).

XpSelectinput selects which X Print events from the specified print context the client isinterest in. The X
Print Events are generated from a current print context, and not from awindow as is the case with XSelectin-
put.

The bits for event_mask are defined in <X 11/extensions/Print.h>:

#define XPNoEventMask 0
#define XPPrintMask (1L<<0)
#define X PAttributeM ask (1L<<1)
The resulting events are defined in <X 11/extensions/Print.h>:
#define X PPrintNotify 0
#define X PAttributeNotify 1

XpSelectinput can generate one of the following errors:

XPBadContext The specified print context is not valid.

X Version 11 Release 6.4

20

2.2.9

X Print Service Extension Library

BadValue The value specified for event_mask is not valid.

Use XpInputSelected to query which X Print events the client has selected to receive from the specific print
context.

unsigned long X plnputSelected (display, context, all_event_mask_return)

Display *display;

XPContext context;

unsigned long *all_event_mask_return;
display Specifies a pointer to the Display structure; returned from X OpenDisplay.
context Specifies the print context to which the query is being made.

all_event_mask return Returnsthe set of events any client has selected.

This request returns a bit mask describing which event classes the client has selected to receive. The value
returned to all_event_mask_return isthe union of every client’s event mask.

XplnputSelected queries which X Print events from the specified print context the client has selected to
receive. The X Print Events are generated from a print context, and not from awindow asis the case with
XSelectinput. As events arrive, the context field in the event can be used to determine which print context gen-
erated the event.

See XpSelectinput for the event_mask and all_event_mask values.
XpInputSelected can generate an XPBadContext error.

Getting and Setting Attributes

Use XpGetAttributes to get an attribute pool from the specified print context.

char * X pGetAttributes (display, context, type)
Display *display;
XPContext context;
XPAttributes type;
display Specifies a pointer to the Display structure; returned from X OpenDisplay.
context The print context from which the attribute pool is to be retrieved.
type Specifies the attribute pool.

XpGetAttributes returns pool, a COMPOUND_TEXT resource string representing the attribute pool specified
by type. The caler is expected to free pool when it is no longer needed using XFree.

The values for the typedef XPAttributes in <X11/extensions/Print.h> are:

#define X PJobAttr 1 /> get/set*/

#define X PDocAttr 2 [* get/set*/

#define X PPageAttr 3 [* get/set - subset of XPDocAttr */
#define X PPrinterAttr 4 [* getonly (library) */

#define X PServerAttr 5 /* get only (library), no context needed */

The attribute pool (hence the resource string) consists of many name-value pairs (for example, ‘copy-count:
3). The syntax of an attribute pool is the same as an X resource file (see “ Resource File Syntax” in the Xlib
specification).

Valid characters for each name (left hand side) are derived from the Posix Portable Filename Character Set
(PPFCS), which is“a’-"z" and “A>-"Z” and “0"-"9” and “_” and “-”. Valid characters for each value (right hand
side) are al characters except NULL and unescaped NEWLINE, though all predefined valuesin the X Print Ser-

Release 6.4

- X Version 11

X Print Service Extension Library 21

L

vice are confined to X Portable Character Set (XPCS) characters. Non XPCS values are typically limited to
localized “description” strings. See XpCreateContext regarding the locale hint for more information on local -
ized values.

XpGetAttributes can generate of one of the following errors:
XPBadContext The specified print context-id is not valid.
BadValue The value specified for typeis not valid.
BadAlloc Insufficient memory.

If any errors occur, XpGetAttributes returns NULL.

Use XpGetOneAttribute to get a single print attribute from the specified print context.

char * X pGetOneAttribute (display, context, type, attribute_name)
Display *display;
XPContext context;
XPAttributes type;
char *attribute_name;

display Specifies a pointer to the Display structure; returned from XOpenDisplay.
context The print context from which the attribute pool is to be retrieved.
type Specifies the attribute pool.

attribute name The name of the attribute to be returned.

This request returns a COMPOUND_TEXT string attribute_value, else NULL if any errors occurred.

XpGetOneAttribute is a variation of XpGetAttributes to get a single attribute value from an attribute pool. Unlike
XpGetAttributes, where the reply contains an entire attribute pool, XpGetOneAttribute returns just one
attribute value.

attribute_name should not include a colon. The caller is expected to free the attribute value returned using
XFree.

XpGetOneAttribute can generate of one of the following errors:

XPBadContext The specified print context-id is not valid.
BadValue The value specified for type is not valid.
BadAlloc Insufficient memory.

Use XpSetAttributes to set or update an attribute pool in the specified print context.

void XpSetAttributes (display, context, type, pool, replacement_rule)

Display *display;

XPContext context;

XPAttributes type;

char *pooal;

XPAttrReplacement replacement_rule;
display Specifies a pointer to the Display structure; returned from XOpenDisplay.
context The print context whose attribute pool is to be modified.
type Specifies the attribute pool to be modified.
pool An attribute pool represented as a resource string. Encoded in COMPOUND_TEXT.
replacement_rule Either X PAttrReplace orX PAttrMerge.

X Version 11 Release 6.4

22

X Print Service Extension Library

XpSetAttributes accepts pool, a COMPOUND_TEXT resource string representing new name-value pairs for
the attribute pool specified by type. The attribute pool is modified by the new name-value pairs according to
replacement_rule. For XPAttrReplace, the existing attribute pool is discarded and replaced with pool. For
XPAttrMerge, pool is merged into the existing attribute pool; pre-existing name-value pairs are replaced, and
non-existing name-value pairs are added. The contents of pool is not affected by this call, and can be freed
by the caller afterwards.

The values for the typedef XPAttributes in <X11/extensions/Print.h> are:

#define X PJobAttr 1 /> get/set*/

#define XPDocALttr 2 [* get/set*/

#define X PPageAttr 3 /* get/set - subset of XPDocALttr */

#define X PPrinterAttr 4 [* getonly (library) */

#define X PServerAttr 5 /* get only (library), no context needed */
The values for the typedef XPAttrReplacement in <X11l/extensions/Print.h> are:

#define X PAttrReplace 1

#define XPAttrMerge 2

When setting supported attribute names, the X Print Server and associated driver will validate the new values
and ignore those that are invalid; previous values remain unchanged. When setting unsupported (i.e.,
unknown) attribute names, no validation is done, and the name-value pairs will be set, even though they will
not be used. When deleting (i.e. failing to reset with X PAttrReplace) a supported attribute name, the X Print
Server explicitly or implicitly resets the attribute to a default value.

When setting certain supported attributes, the X Print Server may modify other associated attributes. For
example, considering the XPPrinterAttr attribute document-formats-supported, setting the XPDocAttr attribute
document-format may cause a number of other attributes to change.

For attribute poolsthat are read-only (see “get only” in X PAttributes definition), attempting to use XpSetAt-
tributes generates a BadMatch. For attribute pools that are writable, lists of the supported attributes can be
found in the XPPrinterAttr pool.

Thelifetime of all attribute pools are bounded by the lifetime of the print context they are contained in.
When set, all attribute values will be retained across all Xp operations, until changed by the user directly, the
X Print Server directly, or changed because of a side effect when either the user or X Print Server changed
another attribute value.

Refer to a complete description of all print attributes, the precedence between print attributes, and the side
effects of setting certain print attributes on other print attributes, etc.

To monitor changes to the attribute pools, see XpSelectinput and the event XPAttributeNotify. Since a print con-
text can be shared among clients, changes made by one client will be seen by all others, and if selected for,
the event XPAttributeNotify will be sent to all clients referencing the print context when changes do occur. Itis
the responsihility of the clients sharing a print context to coordinate their operations.

XpSetAttributes can generate of one of the following errors:
XPBadContext The specified print context-id is not valid.

XPBadSequence A request to set an attribute pool occurred at a time when the attribute pool could
not be modified (for example, modifying XPJobAttr immediately after calling

XpStartJob).
BadValue The value specified for typeisinvalid.
BadMatch The attribute pool specified by pool cannot be set.
BadAlloc I nsufficient memory.

Release 6.4

- X Version 11

X Print Service Extension Library 23

2.2.10 Getting Printer Lists

-

-

Use XpGetPrinterList to retrieve alist of all printers supported on an X Print Server.

XPPrinterList XpGetPrinterList (display, printer_name, list_count_return)

Display *display;

char *printer_name;

int *list_count_return;
display Specifies a pointer to the Display structure; returned from XOpenDisplay.
printer_name Specifies the name of the printer for which information is desired. If NULL, then

information is returned for al printers associated with the server.

list_count_return Returns the number of printersinthelist.

XpGetPrinterList returns alist of printer records where each record describes a printer supported by the X
Print Server, or NULL if any errors occur.

If printer_name is NULL, then alist of all printers supported is returned. If printer_nameis non-NULL, only
print records matching printer_name are returned, and if no records match printer_name, then NULL is
returned.

printer_nameisa COMPOUND_TEXT string, and the name and desc fields in the returned list will bein
COMPOUND_TEXT (note, SO 8859-1 (Latin-1) isa proper subset of COMPOUND_TEXT, so can be
used directly). If printer_nameisin acode-set that the X Print Server cannot convert (into its operating code-
set), then the X Print Server may fail to locate the requested printer. If printer_nameisNULL, then all printer
names, regardless of their code-set, can be returned, leaving the task of specific printer recognition up to the
caller.

When XpGetPrinterList is called, the caller’s local e (see XpSetLocaleHinter) isincluded in the request as a
“hint” to the X Print Server. If supported by the implementation, the X Print Server will usethe hint to locate
alocalized description for each printer in the list. If the X Print Server cannot understand the hint, the X
Print Server will choose a default.

The returned printer list can be freed by calling XpFreePrinterList.
The XPPrinterList structure defined in <X 11/extensions/Print.h> contains:

typedef struct {

char *name; /* name*/

char *desc; /* localized description */
} XPPrinterRec, * XPPrinterList;

XpGetPrinterList can generate a BadAlloc error.

XpFreePrinterList should be used to free a printer list.
void XpFreePrinterList (printer_list)

XPPrinterList printer_list;
printer_list A list of printer records returned by XpGetPrinterList.

XpFreePrinterList frees the list of printer records returned by XpGetPrinterList.

Use XpRehashPrinterList to recompute the list of available printers.

void XpRehashPrinterList (display)

X Version 11 Release 6.4

24 X Print Service Extension Library

Display *display;
_ display Specifies a pointer to the Display structure; returned from XOpenDisplay

XpRehashPrinterList causes th& Print Server to recompute (update) its list ofadlable printersand update

the attrilutes for the printersChe intended usage of this routine is in a special tool that a system administra-
tor can run after changing the printer topold@gneral applications are encouraged to use this call sparingly
if at all, and let the system administrator control printer topology updates.

Depending on the prinatilities underlying th& Print Server, theX Print Server may be able to detect
changes in the printer topology and dynamically update to reflect the changes, or may not be able to detect
the changes and will kia to be notified viXpRehashPrinterList.

Existing print contets will not be aflected byXpRehashPrinterList as long as their printer destination remains
valid.

2.2.11 Querying Version, Extension, and Screen

UseXpQueryVersion to query an X Sepr to determine if it supports the X Print Service Extension, and if it
does, which grsion of the X Print Service Extension.

’7 Status XpQuerysftsion(display, major_version return, minor_version_return)
Display *display;
short *major_version_return;
short*minor_version_return;
display Specifies a pointer to the Display structure; returned from XOpenDisplay
major_version_return Returns the majorersion if the X Print Service Extensiorigs, else zero.
L minor_version_return Returns the minorarsion if the X Print Service Extensioxigs, else zero.

XpQueryVersion determines if the X Print Service Extension is present. A non-zero Status is returned if the
extension is supported, otherwise a zero Status is returned. Ktdresion is supported, the major and
minor version numbers are returned to indicate thiellef X Print Service Extension support.

The X Print Service Extension is initialized on the first call tpXaPrint Service function; there is no need
to explicitly initialize the X Print Service Extension.

UseXpQueryExtension to query an X Seer to determine if it supports the X Print Service Extension, and if it
does, what the tfets are for associatedests and errors.

’7 Bool XpQueryExtensiofidisplay, event_base return, error_base return)
Display *display;
int *event_base return;
int *error_base return;

display Specifies a pointer to the Display structure; returned from XOpenDisplay
event_base return The base alue for X Print Service Extensioneants.
error_base return The base alue for X Print Service Extension errors.

XpQueryExtension determines if the X Print Service Extension is present. It refaresf the extension is
supported, otherwidealse. If the extension is present, the basdues for gents and errors are returned, and
can be used to decode incomingmt and error alues.

The X Print Service Extension is initialized on the first call tpXifPrint Service function; there is no need
to explicitly initialize the X Print Service Extension.

Release 6.4 "X Version 11

X Print Service Extension Library 25

Use XpQueryScreens to query an X Server to determine which of all the screens on the server support the X
Print Service Extension.

Screen ** X pQueryScreens (display, list_count_return)

Display *display;

int *list_count_return;
display Specifies a pointer to the Display structure; returned from X OpenDisplay.
list_count_return Returns the number of screensin thelist.

Thisrequest returns anon-NULL pointer to alist of screen pointersif one or more screens support the X Print
Service Extension; otherwise it returns NULL.

XpQueryScreens determines if the X Print Service Extension is present, and if so, which of all the screens on
the X Server support the X Print Service Extension. Unlike many other extensions, the X Print Service
Extension may be restricted to a subset of all available screens - for example, asingle X Server may be sup-
porting video displays on some screens and printers on others.

The list of screen pointers can be freed by calling XFree.

2.2.12 Getting PDM Parameters

Use XpGetPdmStartParams as a standard convenience function to build up parameters in accordance with the
PDM Selection Protocol

Status X pGetPdmStartParams (print_display, print_window, print_context, video_display, video_window,
selection_display_return, selection_return, type _return, format_return,
data_return, nelements_return)

Display *print_display;
Window print_window;
XPContext print_context;
Display *video_display;
Window video_window;
Display **selection_display return;
Atom *selection_return;
Atom *type_return;

int *format_return;

unsigned char **data_return;
int * nelements_return;

print_display Specifies a pointer to the print Display structure; returned from X OpenDisplay
on the X Print Server.
print_window Specifies a client window on any screen of print_display long-lived enough for

ICCCM communications of the final PDM status (“OK” or “CANCEL"
ClientMessage) sent to print_window.

print_context An existing print context that the PDM should reference.

video_display Specifies a pointer to the video Display structure; returned from XOpenDisplay
on the Video X-Server.

video_window Specifies the window on video_display near which the transient dialogs from

the PDM should be posted.

selection_display return Returns the display connection on which the PDM selection should be made.
May be equal to print_display or video_display, or may be a new display
connection that the caller should close when done.

selection_return Returns the selection atom for which a PDM selection should be made.
type return Returns the type for the PDM Selection Protocol property the caler is expected
to create.

X Version 11 Release 6.4

26

X Print Service Extension Library

format_return Returns the format for the PDM Selection Protocol property the caler is
expected to create.

data_return Returns the data set for the PDM Selection Protocol property the caller is
expected to create. The caller is expected to X Free the data when finished.

nelements _return Returns the number of elements for the PDM Selection Protocol property the

caller is expected to create.

This request returns a zero statusif an error occurred, non-zero otherwise.

XpGetPdmStartParams is a convenience routine used to construct the necessary property information and
selection display connection information needed to initiate a PDM Selection per the “PDM Selection Proto-
col”. Once the information is constructed, the caller is responsible for the creation of a property, the genera-
tion of a SelectionRequest, the receipt of a SelectionNotify event, and the recept of a ClientMessage event, as
described in the PDM Selection Protocol.

When finished, the caller is expected to free data using XFree.

XpGetPdmStartParams returns zero if an error occurred, €lse non-zero. If an error occurs all other _return val-
ues are undefined.

Setting the environment variable XPDMSELECTION causes XpGetPdmStartParams to use an alternate selec-
tion name. If not set, the selection name PDM_MANAGER is used.

Setting the environment variable XPDMDISPLAY causes XpGetPdmStartParams to locate the selection on an
alternate X Server. If not set, selection_display _returnisset equal to print_display. If XPDMDISPLAY is set
to one of the keywords“ pnt” or “ videq’selection_display_return is set to print_display or video_display,
respectively. If XPDMDISPLAY is set to avalid DISPLAY-style string, selection_display_return may be set,
as appropriate, to one of print_display, video_display, or to a new display connection opened from within
XpGetPdmStartParams. Only in the single case where a new display connection is made should the caller
close selection_display_return using X CloseDisplay.

When XpGetPdmStartParams is called, the caller’s locale (see XpSetLocaleHinter) isincluded in the informa-
tionasa“hint” to the Print Dialog Manager (PDM). If supported by the implementation, the PDM will use
the hint to display dialogs more appropriately labeled for the locale of the client. If the Print Dialog Manager
cannot understand the hint, the PDM will choose adefault. Note that the locale of the print attributes that the
PDM will subsequently access, will already have been determined when the client called XpCreateContext.

The environment variables XPDMDISPLAY and XPDMSELECTION are re-read each time XpGetPdmStart-
Params is called.

2.2.13 Setting and Getting Locale Hinters

Use XpSetLocaleHinter to set a“locale hinter” function and description of it.

void XpSetLocaleHinter (hinter_proc, hinter_desc)
XPHinterProc hinter_praoc;
char *hinter_desc;
hinter_proc A pointer to a“hinter proc”.
hinter_desc A pointer to contextual information about the locale hinter proc.

Since (to date) there is no single industry standard for locale values, |ocale information about the current cli-
ent required by XpCreateContext, XpGetPrinterList and XpGetPdmStartParams is at best considered a“hint”
when transmitted to the X Print Server and PDM. In single vendor environments, the locale hint should be
consistent and understood. In multi-vendor environments however, the locale hint may or may not be under-
stood. The caler locale will be used as the fallback default.

Release 6.4

- X Version 11

X Print Service Extension Library 27

XpSetLocaleHinter andXpGetLocaleHinter access toks thatre sed to rgister more adanced hint generators.
By default, Xp uses hinter proc that callsetlocale on th€TYPE catgyory on POSIX systemsnd
hinter_desc islULL.

XpSetLocaleHinter sets the hinter_proc and hinter_desc which will be subsequently used by the Xp calls
requiring a locale hint (see al®). hinter_proc is the function that will generate the locale hint xEmnele,
“C"), and hinter_desc is a string, with or without the embeddadsierdxrd %locale%, that praides a higher
level context for the results of hinter_proc.

If hinter_proc is set thlULL, thenthe default Xp hinter proc is installedpSetLocaleHinter males its evn pri-
vate cop of hinter_desc prior to returning.

An example set call might look as folls:
XpSet Local eHi nter(my_hinter “% ocal e% CDEl ocal e”);

Where my_hinter might look as folls:
char *my_hinter()

{
/*
* Use setlocale() to retrieve the current |ocale.
*/
return(my_x_strdup(setlocal e(LC CTYPE, (char *) NULL)));
}

The signature for hinter_proc is defined in <XXigasions/Print.h> as foligs:
typedef char * (*XPHi nterProc)();

hinter_proc is gpected to return a string that can be freed using XFree by the Xp calls thesnselv

When the cliens locale is needed, if both hinter_desc and the results of hinter_proc atgliom=nd the
keyword %locale% is found in hinter_desc, then theylwvord will be replaced with the result of hinter_proc.
The resulting string will be used as the locale hint by the Xp calls.

If both hinter_desc and the results of hinter_proc areNuth; but the leyword %locale% is not found in
hinter_desc, then hinter_desc, as is, becomes the string used as the locale hint by the Xp calls.

If one of hinter_desc or the results of hinter_prd¢UkL, then the other noNULL value becomes the string
used as the locale hint by the Xp calls.

If hinter_desc and the results of hinter_procNUEL, then aNULL (i.e. (char *) NULL) locale hint is sent by
the Xp calls.

The syntax for hinter_desc is anation of the unadopted X/Open standard for a “String NidtWocale-
Specification Syntax” (X/Open, Distrited Internationalization Servicesgrgion 2, 1994 Snapshot). The
Xp hinter_desc syntax is:

nane_spec|;regi stry spec[;ver_spec[; encodi ng_spec]]]

Some gamples include (hinter_dese left, expandedesults ¢ the right):

CFRENCH CFRENCH

% ocal e% C

% ocal e% CDEl ocal e C, CDEl ocal e
% ocal e% HP C HP

% ocal e% | BM C | BM

% ocal e% XOPEN, 01_11; XFN- 001001 de_DE; XOPEN; 01_11; XFN- 001001

In Xp, the first item is the locale name, felled by progressely more detailed information about the locale
name, with each piece of information separated by a *;'.

X Version 11 Release 6.4

28 X Print Service Extension Library

Use XpGetLocaleHinter to get a pointer to and description of the current “locale hinter” function.

char * XpGetL ocaleHinter (hinter_proc_return)
XPHinterProc *hinter_proc_return;
hinter_proc_return Returns a pointer to the current hinter proc.

XpGetLocaleHinter returns the currently installed hinter proc and hinter description. The function value is the
pointer to the description. The caler is expected to XFree the returned hinter description string.

Release 6.4 - X Version 11

I ndex

A

attributes, getting and settir

C

calls, library 7—27
canceling document$3
canceling jobsl2
canceling paged8
core componenti
creating print context8

D

developer’s view3

documents, starting, ending, and cancelid

E

ending document33
ending jobsl?2
ending paged 8
extension, queryin@4
G

getting attribute20

getting data for documenfsb
getting locale hinter26
getting printer list23

H
hinters, locale26

input, selectingl9
integrator’s view3

J

jobs, starting, ending, and cancelihg@

K
key concept

L

library calls 7—27
locale hinters, setting and getti2dp

M

managing print context8

O

obtaining page dimensiork0
obtaining screen for contestO
overview 1

P

page dimensions, obtainir0

pages, starting, ending, and cancelifg)
PDM parameters, settingb

print context, obtaining screen f&0
printer lists, getting23

printer vendor’s viewb

putting data in documentk5

Q

querying version, extension, scre2d

S

screen for print context O
screen, queryin@4
selecting inputl9

setting attribute0

setting locale hinter26
setting PDM parametei25
starting documentd 3
starting jobsl?2

starting paged 8

system administrator’s view

Vv

version, queryin®?4

X

XpCancelDocl4
XpCancelJokl3
XpCancelPagd 9
XpCreateContex8
XpDestroyContex©
XpEndDoc14
XpEndJobl2
XpEndPagel 8
XpFreePrinterLis23
XpGetAttributes20
XpGetContext9

29

30 | ndex

XpGetDocumentData 16
XpGetimageResolution 11
XpGetLocaleHinter 28
XpGetOneAttribute 21
XpGetPageDimensions 10, 11
XpGetPdmStartParams 25
XpGetPrinterList 23
XpGetScreenOfContext 10
XplnputSelected 20
XpPutDocumentData 15
XpQueryExtension 24
XpQueryScreens 25
XpQueryVersion 24
XpRehashPrinterList 23
XpSelectinput 19
XpSetAttributes 21
XpSetContext 8
XpSetlmageResolution 11
XpSetLocaleHinter 26
XpStartDoc 13
XpStartJob 12
XpStartPage 18

